Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Pediatr Res ; 2023 May 12.
Article in English | MEDLINE | ID: covidwho-2313294

ABSTRACT

BACKGROUND: Although most children experience mild symptoms during acute SARS-CoV-2 infection, some develop the severe post-COVID-19 complication, Multisystem Inflammatory Syndrome in Children (MIS-C). While acute presentations of COVID-19 and MIS-C have been well immunophenotyped, little is known about the lasting immune profile in children after acute illness. METHODS: Children 2 months-20 years of age presenting with either acute COVID-19 (n = 9) or MIS-C (n = 12) were enrolled in a Pediatric COVID-19 Biorepository at a single medical center. We deeply profiled humoral immune responses and circulating cytokines following pediatric COVID-19 and MIS-C. RESULTS: Twenty-one children and young adults provided blood samples at both acute presentation and 6-month follow-up (mean: 6.5 months; standard deviation: 1.77 months). Pro-inflammatory cytokine elevations resolved after both acute COVID-19 and MIS-C. Humoral profiles continue to mature after acute COVID-19, displaying decreasing IgM and increasing IgG over time, as well as stronger effector functions, including antibody-dependent monocyte activation. In contrast, MIS-C immune signatures, especially anti-Spike IgG1, diminished over time. CONCLUSIONS: Here, we show the mature immune signature after pediatric COVID-19 and MIS-C, displaying resolving inflammation with recalibration of the humoral responses. These humoral profiles highlight immune activation and vulnerabilities over time in these pediatric post-infectious cohorts. IMPACT: The pediatric immune profile matures after both COVID-19 and MIS-C, suggesting a diversified anti-SARS-CoV-2 antibody response after resolution of acute illness. While pro-inflammatory cytokine responses resolve in the months following acute infection in both conditions, antibody-activated responses remain relatively heightened in convalescent COVID-19. These data may inform long-term immunoprotection from reinfection in children with past SARS-CoV-2 infections or MIS-C.

2.
Am J Obstet Gynecol ; 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-2238845

ABSTRACT

BACKGROUND: Although emerging data during the SARS-CoV-2 pandemic have demonstrated robust messenger RNA vaccine-induced immunogenicity across populations, including pregnant and lactating individuals, the rapid waning of vaccine-induced immunity and the emergence of variants of concern motivated the use of messenger RNA vaccine booster doses. Whether all populations, including pregnant and lactating individuals, will mount a comparable response to a booster dose is not known. OBJECTIVE: This study aimed to profile the humoral immune response to a COVID-19 messenger RNA booster dose in a cohort of pregnant, lactating, and nonpregnant age-matched women. STUDY DESIGN: This study characterized the antibody response against ancestral Spike and Omicron in a cohort of 31 pregnant, 12 lactating, and 20 nonpregnant age-matched controls who received a BNT162b2 or messenger RNA-1273 booster dose after primary COVID-19 vaccination. In addition, this study examined the vaccine-induced antibody profiles of 15 maternal-to-cord dyads at delivery. RESULTS: Receiving a booster dose during pregnancy resulted in increased immunoglobulin G1 levels against Omicron Spike (postprimary vaccination vs postbooster dose; P=.03). Pregnant and lactating individuals exhibited equivalent Spike-specific total immunoglobulin G1, immunoglobulin M, and immunoglobulin A levels and neutralizing titers against Omicron compared with nonpregnant women. Subtle differences in Fc receptor binding and antibody subclass profiles were observed in the immune response to a booster dose in pregnant vs nonpregnant individuals. The analysis of maternal and cord antibody profiles at delivery demonstrated equivalent total Spike-specific immunoglobulin G1 in maternal and cord blood, yet higher Spike-specific FcγR3a-binding antibodies in the cord relative to maternal blood (P=.002), consistent with the preferential transfer of highly functional immunoglobulin. Spike-specific immunoglobulin G1 levels in the cord were positively correlated with the time elapsed since receiving the booster dose (Spearman R, .574; P=.035). CONCLUSION: Study data suggested that receiving a booster dose during pregnancy induces a robust Spike-specific humoral immune response, including against Omicron. If boosting occurs in the third trimester of pregnancy, higher Spike-specific cord immunoglobulin G1 levels are achieved with greater time elapsed between receiving the booster and delivery. Receiving a booster dose has the potential to augment maternal and neonatal immunity.

3.
Circulation ; 147(11): 867-876, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2194412

ABSTRACT

BACKGROUND: Cases of adolescents and young adults developing myocarditis after vaccination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-targeted mRNA vaccines have been reported globally, but the underlying immunoprofiles of these individuals have not been described in detail. METHODS: From January 2021 through February 2022, we prospectively collected blood from 16 patients who were hospitalized at Massachusetts General for Children or Boston Children's Hospital for myocarditis, presenting with chest pain with elevated cardiac troponin T after SARS-CoV-2 vaccination. We performed extensive antibody profiling, including tests for SARS-CoV-2-specific humoral responses and assessment for autoantibodies or antibodies against the human-relevant virome, SARS-CoV-2-specific T-cell analysis, and cytokine and SARS-CoV-2 antigen profiling. Results were compared with those from 45 healthy, asymptomatic, age-matched vaccinated control subjects. RESULTS: Extensive antibody profiling and T-cell responses in the individuals who developed postvaccine myocarditis were essentially indistinguishable from those of vaccinated control subjects, despite a modest increase in cytokine production. A notable finding was that markedly elevated levels of full-length spike protein (33.9±22.4 pg/mL), unbound by antibodies, were detected in the plasma of individuals with postvaccine myocarditis, whereas no free spike was detected in asymptomatic vaccinated control subjects (unpaired t test; P<0.0001). CONCLUSIONS: Immunoprofiling of vaccinated adolescents and young adults revealed that the mRNA vaccine-induced immune responses did not differ between individuals who developed myocarditis and individuals who did not. However, free spike antigen was detected in the blood of adolescents and young adults who developed post-mRNA vaccine myocarditis, advancing insight into its potential underlying cause.


Subject(s)
COVID-19 , Myocarditis , Adolescent , Child , Young Adult , Humans , COVID-19 Vaccines/adverse effects , Myocarditis/etiology , Spike Glycoprotein, Coronavirus , COVID-19/prevention & control , SARS-CoV-2 , Cytokines , Autoantibodies , Antibodies, Viral
4.
NPJ Vaccines ; 7(1): 158, 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2151038

ABSTRACT

Currently available mRNA vaccines are extremely safe and effective to prevent severe SARS-CoV-2 infections. However, the emergence of variants of concerns (VOCs) has highlighted the importance of high population-based vaccine rates to effectively suppress viral transmission and breakthrough infections. While initially left out from vaccine efforts, children have become one of the most affected age groups and are key targets to stop community and household spread. Antibodies are central for vaccine-induced protection and emerging data points to the importance of additional Fc effector functions like opsononophagocytosis or cytotoxicity, particularly in the context of VOCs that escape neutralizing antibodies. Here, we observed delayed induction and reduced magnitude of vaccine-induced antibody titers in children 5-11 years receiving two doses of the age-recommended 10 µg dose of the Pfizer SARS-CoV-2 BNT162b2 vaccine compared to adolescents (12-15 years) or adults receiving the 30 µg dose. Conversely, children mounted equivalent or more robust neutralization and opsonophagocytic functions at peak immunogenicity, pointing to a qualitatively more robust humoral functional response in children. Moreover, broad cross-VOC responses were observed across children, with enhanced IgM and parallel IgG cross-reactivity to VOCs in children compared to adults. Collectively, these data argue that despite the lower magnitude of the BNT162b2-induced antibody response in children, vaccine-induced immunity in children target VOCs broadly and exhibit enhanced functionality that may contribute to the attenuation of disease.

5.
Vaccines (Basel) ; 10(10)2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2071927

ABSTRACT

The goal of this study was to investigate the relationship between anti-SARS-CoV-2-Spike IgG titers passively transferred to the fetus from maternal vaccination during pregnancy and timing of infant SARS-CoV-2 infection. Pregnant, vaccinated individuals (n = 105) and their infants (n = 107) were enrolled in a prospective cohort study from July 2021 to June 2022, linking infant anti-Spike IgG titer at birth to risk of SARS-CoV-2 infection in the first fifteen months of life. Cord blood sera were collected at delivery and infant sera were collected at two and six months of age. Anti-SARS-CoV-2-Spike IgG levels were quantified in cord and infant sera using an enzyme-linked immunosorbent assay. Infants were followed for SARS-CoV-2 infection through fifteen months of age. Anti-SARS-CoV-2-Spike IgG titers in infants declined significantly with increased age (p < 0.001). Infants with higher anti-Spike cord blood levels had significantly longer disease-free intervals prior to infection with SARS-CoV-2 (p = 0.027). While higher anti-Spike IgG titer at two months of age was associated with a longer interval to infection through nine months of age (p = 0.073), infant anti-Spike IgG titers by six months of age had no impact on disease-free interval. This cohort study suggests that passively transferred maternal IgG is protective against infant SARS-CoV-2 infection, with higher antibody levels at birth significantly associated with longer disease-free intervals. Infant antibodies and protection from SARS-CoV-2 infection wane significantly after six months, suggesting that vaccination is needed at this stage to optimize protection against COVID-19.

6.
BMC Pediatr ; 22(1): 130, 2022 03 12.
Article in English | MEDLINE | ID: covidwho-2038684

ABSTRACT

BACKGROUND: Patient-level predictors of enrollment in pediatric biorepositories are poorly described. Especially in pandemic settings, understanding who is likely to enroll in a biorepository is critical to interpreting analyses conducted on biospecimens. We describe predictors of pediatric COVID-19 biorepository enrollment and biospecimen donation to identify gaps in COVID-19 research on pediatric biospecimens. METHODS: We compared data from enrollees and non-enrollees aged 0-25 years with suspected or confirmed COVID-19 infection who were approached for enrollment in the Massachusetts General Hospital pediatric COVID-19 biorepository between April 12, 2020, and May 28, 2020, from community or academic outpatient or inpatient settings. Demographic and clinical data at presentation to care were from automatic and manual chart extractions. Predictors of enrollment and biospecimen donation were assessed with Poisson regression models. RESULTS: Among 457 individuals approached, 214 (47%) enrolled in the biorepository. A COVID-19 epidemiologic risk factor was recorded for 53%, and 15% lived in a US Centers for Disease Control and Prevention-defined COVID-19 hotspot. Individuals living in a COVID-19 hotspot (relative risk (RR) 2.4 [95% confidence interval (CI): 1.8-3.2]), with symptoms at presentation (RR 1.8 [95% CI: 1.2-2.7]), or admitted to hospital (RR 1.8 [95% CI: 1.2-2.8]) were more likely to enroll. Seventy-nine percent of enrollees donated any biospecimen, including 97 nasopharyngeal swabs, 119 oropharyngeal swabs, and 105 blood, 16 urine, and 16 stool specimens, respectively. Age, sex, race, ethnicity, and neighborhood-level socioeconomic status based on zip code did not predict enrollment or biospecimen donation. CONCLUSIONS: While fewer than half of individuals approached consented to participate in the pediatric biorepository, enrollment appeared to be representative of children affected by the pandemic. Living in a COVID-19 hotspot, symptoms at presentation to care and hospital admission predicted biorepository enrollment. Once enrolled, most individuals donated a biospecimen.


Subject(s)
COVID-19 , Adolescent , Adult , COVID-19/epidemiology , Child , Child, Preschool , Ethnicity , Humans , Infant , Infant, Newborn , Massachusetts , Pandemics , Young Adult
7.
Sci Transl Med ; 14(672): eabn9237, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-1962065

ABSTRACT

Although children have been largely spared from coronavirus disease 2019 (COVID-19), the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with increased transmissibility, combined with fluctuating mask mandates and school reopenings, has led to increased infections and disease among children. Thus, there is an urgent need to roll out COVID-19 vaccines to children of all ages. However, whether children respond equivalently to adults to mRNA vaccines and whether dosing will elicit optimal immunity remain unclear. Here, we aimed to deeply profile the vaccine-induced humoral immune response in 6- to 11-year-old children receiving either a pediatric (50 µg) or adult (100 µg) dose of the mRNA-1273 vaccine and to compare these responses to vaccinated adults, infected children, and children who experienced multisystem inflammatory syndrome in children (MIS-C). Children elicited an IgG-dominant vaccine-induced immune response, surpassing adults at a matched 100-µg dose but more variable immunity at a 50-µg dose. Irrespective of titer, children generated antibodies with enhanced Fc receptor binding capacity. Moreover, like adults, children generated cross-VOC humoral immunity, marked by a decline of omicron-specific receptor binding domain, but robustly preserved omicron spike protein binding. Fc receptor binding capabilities were also preserved in a dose-dependent manner. These data indicate that both the 50- and 100-µg doses of mRNA vaccination in children elicit robust cross-VOC antibody responses and that 100-µg doses in children result in highly preserved omicron-specific functional humoral immunity.


Subject(s)
Antibody Formation , COVID-19 Vaccines , COVID-19 , Child , Humans , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Receptors, Fc , SARS-CoV-2 , Vaccination
8.
Nat Commun ; 13(1): 3571, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1908170

ABSTRACT

The availability of three COVID-19 vaccines in the United States provides an unprecedented opportunity to examine how vaccine platforms and timing of vaccination in pregnancy impact maternal and neonatal immunity. Here, we characterize the antibody profile after Ad26.COV2.S, mRNA-1273 or BNT162b2 vaccination in 158 pregnant individuals and evaluate transplacental antibody transfer by profiling maternal and umbilical cord blood in 175 maternal-neonatal dyads. These analyses reveal lower vaccine-induced functions and Fc receptor-binding after Ad26.COV2.S compared to mRNA vaccination and subtle advantages in titer and function with mRNA-1273 versus BN162b2. mRNA vaccines have higher titers and functions against SARS-CoV-2 variants of concern. First and third trimester vaccination results in enhanced maternal antibody-dependent NK-cell activation, cellular and neutrophil phagocytosis, and complement deposition relative to second trimester. Higher transplacental transfer ratios following first and second trimester vaccination may reflect placental compensation for waning maternal titers. These results provide novel insight into the impact of platform and trimester of vaccination on maternal humoral immune response and transplacental antibody transfer.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Ad26COVS1 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Immunity , Infant, Newborn , Placenta , Pregnancy , Pregnancy Complications, Infectious/prevention & control , SARS-CoV-2 , United States , Vaccination/methods
9.
Vaccines (Basel) ; 10(4)2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-1822452

ABSTRACT

Emergent SARS-CoV-2 variants and waning humoral immunity in vaccinated individuals have resulted in increased infections and hospitalizations. Children are not spared from infection nor complications of COVID-19, and the recent recommendation for boosters in individuals ages 12 years or older calls for broader understanding of the adolescent immune profile after mRNA vaccination. We tested the durability and cross-reactivity of anti-SARS-CoV-2 serologic responses over a six-month time course in vaccinated adolescents against the SARS-CoV-2 D614G ("wild type") and Omicron antigens. Serum from 77 adolescents showed that anti-Spike antibodies wane significantly over six months. After completion of a two-vaccine series, cross-reactivity against Omicron-specific receptor-binding domain (RBD) was seen. Functional humoral activation against wild type and Omicron SARS-CoV-2 also declines over time in vaccinated adolescent children. Evidence of waning mRNA-induced vaccine immunity underscores vulnerabilities in long-term pediatric protection against SARS-CoV-2 infection, while cross-reactivity highlights the additional benefits of vaccination. Characterization of adolescent immune signatures post-vaccination will inform guidance on vaccine platforms and timelines, and ultimately optimize immunoprotection of children.

10.
J Infect Dis ; 224(11): 1821-1829, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545975

ABSTRACT

BACKGROUND: Data on pediatric coronavirus disease 2019 (COVID-19) has lagged behind adults throughout the pandemic. An understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral dynamics in children would enable data-driven public health guidance. METHODS: Respiratory swabs were collected from children with COVID-19. Viral load was quantified by reverse-transcription polymerase chain reaction (RT-PCR); viral culture was assessed by direct observation of cytopathic effects and semiquantitative viral titers. Correlations with age, symptom duration, and disease severity were analyzed. SARS-CoV-2 whole genome sequences were compared with contemporaneous sequences. RESULTS: One hundred ten children with COVID-19 (median age, 10 years [range, 2 weeks-21 years]) were included in this study. Age did not impact SARS-CoV-2 viral load. Children were most infectious within the first 5 days of illness, and severe disease did not correlate with increased viral loads. Pediatric SARS-CoV-2 sequences were representative of those in the community and novel variants were identified. CONCLUSIONS: Symptomatic and asymptomatic children can carry high quantities of live, replicating SARS-CoV-2, creating a potential reservoir for transmission and evolution of genetic variants. As guidance around social distancing and masking evolves following vaccine uptake in older populations, a clear understanding of SARS-CoV-2 infection dynamics in children is critical for rational development of public health policies and vaccination strategies to mitigate the impact of COVID-19.


Subject(s)
COVID-19 , Viral Load , Adolescent , COVID-19/diagnosis , COVID-19/pathology , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Pandemics , SARS-CoV-2/genetics , Young Adult
11.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1311202

ABSTRACT

BACKGROUNDWeeks after SARS-CoV-2 infection or exposure, some children develop a severe, life-threatening illness called multisystem inflammatory syndrome in children (MIS-C). Gastrointestinal (GI) symptoms are common in patients with MIS-C, and a severe hyperinflammatory response ensues with potential for cardiac complications. The cause of MIS-C has not been identified to date.METHODSHere, we analyzed biospecimens from 100 children: 19 with MIS-C, 26 with acute COVID-19, and 55 controls. Stools were assessed for SARS-CoV-2 by reverse transcription PCR (RT-PCR), and plasma was examined for markers of breakdown of mucosal barrier integrity, including zonulin. Ultrasensitive antigen detection was used to probe for SARS-CoV-2 antigenemia in plasma, and immune responses were characterized. As a proof of concept, we treated a patient with MIS-C with larazotide, a zonulin antagonist, and monitored the effect on antigenemia and the patient's clinical response.RESULTSWe showed that in children with MIS-C, a prolonged presence of SARS-CoV-2 in the GI tract led to the release of zonulin, a biomarker of intestinal permeability, with subsequent trafficking of SARS-CoV-2 antigens into the bloodstream, leading to hyperinflammation. The patient with MIS-C treated with larazotide had a coinciding decrease in plasma SARS-CoV-2 spike antigen levels and inflammatory markers and a resultant clinical improvement above that achieved with currently available treatments.CONCLUSIONThese mechanistic data on MIS-C pathogenesis provide insight into targets for diagnosing, treating, and preventing MIS-C, which are urgently needed for this increasingly common severe COVID-19-related disease in children.


Subject(s)
COVID-19/etiology , COVID-19/physiopathology , Haptoglobins/physiology , Intestinal Mucosa/physiopathology , Protein Precursors/physiology , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/physiopathology , Adolescent , Antigens, Viral/blood , Biomarkers/blood , COVID-19/virology , Case-Control Studies , Child , Child, Preschool , Female , Haptoglobins/antagonists & inhibitors , Humans , Infant , Infant, Newborn , Intestinal Mucosa/drug effects , Intestinal Mucosa/virology , Male , Oligopeptides/pharmacology , Permeability/drug effects , Proof of Concept Study , Protein Precursors/antagonists & inhibitors , Protein Precursors/blood , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , Systemic Inflammatory Response Syndrome/virology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL